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In large scale heterogeneous aquifer simulations, determining the appropriate coarsening scale A to define an
effective hydraulic conductivity K.y is a challenging task, that involves a trade-off between accuracy and cost.
Efficiently adjusting the scale A is then key, in particular for uncertainty quantification. In this paper, we obtain
improved analytical results for the variance of K, valid at any scale, in the context of energy dissipation formu-
lation. Using this formulation, we then derive an efficient K, numerical estimator, and compare it with those of

the potential-flow average and permeameter formulations in 2D, for lognormal and binary media, over a wide
range of 4 and of heterogeneity. We analyze the probability density function (pdf), mean, and variance, of these
estimators, comparing them with the analytical results. In the lognormal case, the pdf’s are rather similar for
the three estimators, and remain lognormal at all scales. In the binary case, slow convergence to an asymptotic
regime is observed close to the percolation threshold.

1. Introduction

Describing effective properties of heterogeneous media has impor-
tant applications in many fields of engineering and science. For exam-
ple, the electrical or thermal effective conductivity of mixtures, or elastic
properties of composites materials have been studied since many years
ago (Maxwell, 1873; Bruggeman, 1935; Landau and Lifshitz, 1960; Au-
riault, 1983; Willot and Jeulin, 2009; Zhou et al., 2016). In particular,
determining an effective hydraulic conductivity is of major interest in
a variety of disciplines related to subsurface flow, such as groundwater
flow characterization (Renard and De Marsily, 1997; Matheron, 1967;
Dagan, 1989; Dagan et al., 2013), Carbon Capture Utilisation and Stor-
age (CCUS) development (Akber Hassan and Jiang, 2012; Celia et al.,
2015), and oil and gas reservoir engineering (King, 1989; Durlofsky,
1991; 1992; Preux, 2016; Malinouskaya et al., 2018). The scarcity of
field data (Matheron, 1967; Dagan, 1989; Hristopulos, 2020) makes it
necessary to perform some sort of interpolation, with frequent use of
a stochastic approach (Gelhar, 1993; Linde et al., 2015; Godoy et al.,
2018) that treats the point conductivity values as a random process,
eventually accompanied by field data conditioning. While the use of
this approach permits a good management of uncertainty, it turns too
costly to solve the flow at the fine scale provided by laboratory (micro-
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tomography, synchrotron), or geological sources (Dagan et al., 2013),
specially for large domains.

In addition, one may want to incorporate data obtained at different
support scales before interpolation. To alleviate this issues, upscaling
procedures allow us to perform a mapping from a fine scale onto a coarse
scale, in which the solution of the flow is less costly.

Fig. 1 shows the lengthscales and geometrical features of the upscal-
ing process. The fine scale conductivity k(r) (r is the position vector) is
defined over the regional domain w c RP, (dimension D=1, 2 or 3) at
a support scale A. The coarsening scale 4 determines a domain 9, over
which the effective hydraulic conductivity K is defined. One the one
hand, for practical and conceptual purposes, we can establish an upper
bound L for 4, determined by the largest subdomain Q over which it is
still possible to solve the flow, eventually imposing boundary conditions
at 0Q if natural flow conditions are unknown. For example, L could be
a characteristic aquifer scale. On the other hand, a lower bound for 4
is given by the support scale A. The effective conductivity of a block
or subdomain 9, defined by the coarsening scale 4, i.e. K,5(4), depends
on the values of k(r) within 3, but also on the conditions at the bound-
ary 09, which may be imposed or known. Moreover, K.(4) is a tensor
in principle, however, for isotropic media, and certain flow conditions
(Sanchez-Vila et al., 1995; Vereecken et al., 2007), the use of a scalar
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Fig. 1. Lengthscales and geometry of the upscaling procedure: The fine scale
conductivity k(r) is defined over the regional domain under investigation w, at
a support scale A. The upscaling procedure maps k(r) onto K,(8), while $CQ
is defined by the coarsening scale 4, with A < A < L.

T

K, is appropriate. Finding a suitable coarsening scale 4 requires deal-
ing with a trade-off between accuracy and cost: as 4 increases, the cost
to solve the flow decreases, but some details of the heterogeneity (and
of the flow) get lost, and the values of K, become less representative of
the fine description. The choice of a scale A that retains the most salient
flow features, while keeping the cost of the flow solution low, makes
upscaling a challenging task.

In the following section, we revisit briefly some upscaling results,
with focus on the types of media studied in most works, including the
present one, i.e., lognormal and binary media, to later discuss Ko dis-
tributions, and some upscaling formulations.

1.1. Previous results

Analytical methods like bounds-based approaches (Hashin and
Shtrikman, 1962; Renard and De Marsily, 1997; Le Loc’H, 1987; Pozd-
niakov and Tsang, 2004) or power averaging (Journel et al., 1986; Des-
barats and Srivastava, 1991; Masihi et al., 2016) provide a remarkable
insight, although, as they estimate K, from the point values k(r) only,
they disregard the influence of the flow behavior at 0Q.

Depending on the detailed context, homogenization techniques
(Auriault, 1983; Durlofsky, 1991; Jikov et al., 2012; Armstrong et al.,
2019), volume averaging techniques (Hassanizadeh and Gray, 1979;
Quintard and Whitaker, 1998; Durlofsky, 1998; Whitaker, 2013; Gray
and Miller, 2005; Leung and Srinivasan, 2012; Wood and Valdés-
Parada, 2013; Davit and Quintard, 2017; Aguilar-Madera et al., 2019)
or stochastic perturbation theory (Landau and Lifshitz, 1960; Matheron,
1967; Dagan, 1989; King, 1989; Rubin and Gémez-Hernandez, 1990;
Indelman and Dagan, 1993a; 1993b; Noetinger, 1994; Indelman and
Abramovich, 1994; Ababou, 1994; Abramovich and Indelman, 1995;
Noetinger and Gautier, 1998; Noetinger, 2000; Liao et al., 2019) were
developed over many decades. All these methods provide a rigorous an-
alytical framework supporting the existence and uniqueness of K, for
a wide variety of media types.

Analytical efforts took place mainly using perturbation theory
(Gelhar, 1993; Dagan, 1989). The so called Landau-Lifschitz-Matheron
(LLM) (Landau and Lifshitz, 1960; Matheron, 1967) formula reads:

1
2
Ko i (K7D 05, O

In the case of a lognormal distribution of fine scale conductivity, this for-
mula can be written under the equivalent form (King, 1989; Noetinger,
1994):

1_1 — 1_1 —
(Kepy) = exp (log(k))el2 ™D Uoex =0 = oG5 Clozs(r=0)
The notation (---) indicates ensemble arithmetic averaging over all the

possible realizations of the fine scale structure. K, denotes the geometric

mean of the fine grid conductivity, and Ci,, (r = 0) the variance of its
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logarithm. In this work, wherever the expressions log (k) or log (Keff)
are shown, it is implied that the argument of the logarithm is divided
by 1 m/day, to make it dimensionless.

In most cases, an ergodicity assumption allows to replace the en-
semble average by a spatial average (Ababou, 1996; Sanchez-Vila et al.,
2006), such that for finite block of size L, one estimates K as:

1
~ (1 (1-2) b\ u-3
Koy, = (7 /b » k@)= 5)gPr ) 7D @

This formula, with dimension D =1,2,3 whose evaluation is
straightforward, is exact in 1D for any type of media, yielding the har-
monic average. In 2D, it corresponds to the geometric average that was
found to be exact in 2D for lognormal media by Matheron (1967), who
derived it using an elegant duality argument specific to 2 dimensions.
In 3D, the formula is exact up to second order (Dagan, 1993) with re-
spect to log-conductivity variance (using a series expansion of K up
to 4th order in powers of the log-conductivity fluctuations). But in 3D,
the proposed formula was shown to be inexact at third order by several
authors (Indelman and Abramovich, 1994; De Wit, 1995; Stepanyants
and Teodorovich, 2003).

Moreover, higher order results were shown to be structure depen-
dent: this prevents the existence of a local evaluation expression like
Eq. (1) in 3D. However, numerical tests carried out show that LLM for-
mula is quite robust in 3D even for large log-conductivity variances
(Dagan, 1989; Romeu and Noetinger, 1995; Renard and De Marsily,
1997). Some generalization of such approaches for anisotropic cases
were revisited recently by Liao et al. (2019).

From a more geological point of view, a frequent organization of
the subsurface heterogeneous formations in a number of hydrofacies,
that correspond to different types of rock, or sediments, having a well
defined hydraulic property, such as porosity or permeability, may be
observed in natural systems (Journel et al., 1986; Beucher and Renard,
2016). Each facies possesses its own characteristic features. That pro-
moted the study of the effective conductivity of composite media. Bi-
nary or bimodal media are the simplest cases, while still retaining the
complexity of percolative systems. These types of media have been ex-
tensively studied using self-consistent effective medium approaches in
the electrodynamical or elasticity contexts (Maxwell, 1873; Bruggeman,
1935; Landau and Lifshitz, 1960; Auriault, 1983; Pozdniakov and Tsang,
2004).

Analytical results, based on a mixing of characteristic conductivity
values and bounds (Hashin and Shtrikman, 1962; 1963), exist for this
type of media (Bernabé et al., 2004); in them, connectivity is implicitly
taken into account.

Other authors (Pozdniakov and Tsang, 2004; Knudby and Carrera,
2005; Guin and Ritzi, 2008; Bernabé et al., 2016) studied numerically
the influence of the contrast between the high and low conductivity
components k* and k™. The abrupt change in K, that takes place close
to the percolation transition, when the k* component becomes con-
nected, poses difficulties during the upscaling procedure (Boschan and
Noetinger, 2012).

Indeed, percolation theory scaling (Berkowitz and Balberg, 1993;
Stauffer and Aharony, 2014; Hunt et al., 2014; Hunt and Sahimi, 2017)
has been used to assess K, in this type of media, but some restrictions
exist:

e This scaling is only valid for media in which the proportion of high
conductivity medium is close to the percolation transition,

e Percolation transition is smeared-out by finite size effects and finite
conductivity contrast values.

1.2. K¢ probability distributions

Due to the fact that subsurface uncertainty is frequently dealt with
by using a stochastic approach, it is appropriate to treat K¢ as a ran-
dom variable characterized by a probability distribution more than by
a deterministic value.
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Fig. 2. Probability density function P(K g, 4) for increasing values of the coarsening scale A. Left: Fine scale distribution P(k(r), A), where k(r) follows, as an example,
a lognormal distribution. Center: P(K,y, 4) becomes narrower as A increases. Right: For A ~ L, P(K,¢, A) approaches a delta-like function centered on a single Koy
value. For dimensional reasons, the K is normalized by a unit reference conductivity of 1 m/day.

Although the literature mainly focuses on the firsts moments of the
probability density function (pdf), such as the mean and variance (Rubin
and Gomez-Hernandez, 1990; Sanchez-Vila et al., 1995; Sanchez-Vila
et al., 2006), the shape of the pdf provides unique insight on the under-
lying flow situation. For example, in media samples near percolation, a
bimodal pdf may yield a mean K value that truly has a negligible oc-
currence probability: this situation may easily arise when dealing with
fractured media or, in general, with media possessing a high degree of
heterogeneity. The pdf of K, depends on the coarsening scale 4, and
will be noted P(K,¢, 4).

For clarity, P(K,¢, A) undergoes a transition from P(k(r), A) to P(K,¢,
L) as A goes from A to L. For A = A, the distribution of k(r) is recov-
ered, while for 1 ~ L, P(K,¢, 4) will tend toward a delta-like distribu-
tion sharply peaked around a stable K value (see Fig. 2). If it is possi-
ble to define a characteristic lengthscale (for example an integral scale
I) for the media under consideration, a crossover is expected when A
approaches it. More conceptually, a representative elementary volume
(REV) may be determined by inspecting significant changes of the shape
of P(K,¢, A). The fact that the statistical sampling becomes poorer as 4
increases, can be compensated, in the framework of the stochastic the-
ory, and assuming ergodicity, by an increase in the number of ensemble
realizations.

The behavior of P(K,s, A) was addressed in several studies (King,
1989; Sanchez-Vila et al., 2006; Wen and Gémez-Hernindez, 1996; Wu
et al.,, 2013). In Boschan and Noetinger (2012), the convergence of
P(K,¢, 4) was studied in 3D for lognormal and binary media. In the log-
normal case, P(K,¢, 4) kept its lognormal nature as 4 increased. If this
result hold in 2D (this will be analyzed in the present work), it might
stem from the work of Matheron (1967). In the binary case, it was shown
that the convergence to a stable K is slower when the k* component is
close to the percolation transition (Stauffer and Aharony, 2014). Finally,
under the ergodic hypothesis, several studies assessed the use of filtering
techniques to derive P(K,¢, A) at all scales (King, 1989; Noetinger and
Gautier, 1998; Noetinger, 2000; Noetinger and Zargar, 2004; Attinger,
2003; Eberhard et al., 2004).

1.3. Upscaling formulations and numerical implementations

The fact that analytical results are limited to some academic cases,
and strictly valid only up to second order in 3D, imposes the use of nu-
merical techniques to obtain K¢ as well as its distribution by means of
Monte Carlo simulations. Several numerical techniques were developed
using different approaches and provide accurate solutions (Desbarats
and Srivastava, 1991; Durlofsky, 1991; Desbarats, 1992; Quintard and
Whitaker, 1998; Wang et al., 2014; Zheng et al., 2017; Wang et al.,
2018). The numerical implementations calculate a value K in 8 from
the fine conductivity field k(r), and from the boundary conditions at 99,
in what constitutes a numerical solution of the closure problem posed
by the associated Laplace equation. Moreover, some of them use bor-
der regions, including information of the outer neighbourhood of 9%

(Wen et al., 2003). Two aspects of the solution of the closure problem
by numerical simulations stand out:

1. The task of finding the optimal scale 4 in each flow scenario
makes upscaling a multiscale problem par excellence.

2. The choice of the formulation, in particular that of the boundary
conditions, strongly affects accuracy and numerical efficiency.
For example, imposing boundary conditions at 0% decouples the
flow in 9 from its outer region, in a rather invasive procedure, in
view of item 1). In that sense, solving the flow in Q once, and then
employing this solution to estimate P(K,g, A), i.e., seems less in-
vasive and more efficient, but requires the ability to solve larger
systems of equations.

From the existing upscaling formulations, the most widely used is the
permeameter (Darcian) one, which, as a particularity, isolates the flow
in 9, suffering from the drawback explained above. This formulation,
and its implementation, will be formally introduced in Section 2.2. An-
other frequent formulation, (Rubin and Gémez-Hernandez, 1990) and
(Sanchez-Vila et al., 1995), uses the solution of potential and the associ-
ated flow in Q, evaluating their averages over 99 to obtain K. In order
to obtain a scalar Kz, some assumption is required.

Finally, Indelman and Dagan (1993a,b); Bge (1994) proposed that
K, could be defined by assuming that the dissipated energy is conserved
during the upscaling procedure. This might be the strongest conceptual
definition ever formulated, however, its implementation to obtain Ko
is mathematically difficult.

Aiming to reduce the computational cost, a number of approaches
that combine different formulations were proposed (Chen et al., 2003;
Bauer et al., 2008; Wu et al., 2013; Karimi-Fard and Durlofsky, 2016),
with the support of ergodicity considerations (Ababou et al., 1989;
Ababou, 1994; 1996; Desbarats and Srivastava, 1991).

1.4. Objectives

In this paper, we intend to explore analytically and numerically the
multiscale nature of the upscaling procedure in the context of the dif-
ferent formulations in 2D. On the one hand, after reviewing the existing
body of literature, we update the formulae introduced in previous stud-
ies to characterize the mean and variance of K¢, valid at the scale Q
at which the boundary conditions are imposed. We derive, in the con-
text of the energy dissipation formulation, a new expression for the
variance, this time, valid at any subscale 3 CQ, up to second order in
perturbation theory. On the other hand, using that formulation, we de-
fine and implement a new numerical estimator of K. based on a scalar
energy dissipation average. This estimator can be obtained at any sub-
scale A with nearly negligible additional CPU time once the potential
in Q is solved. Aiming to provide a comprehensive view, the pdf, the
mean and the variance of this estimator are compared with those of the
potential-flow average estimator, and of the permeameter Darcian one,
over a wide range of coarsening scales. This study is performed over
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lognormal media samples with a wide range of fine grid variances, and
over binary media samples spanning the percolation transition.

The paper is organized as follows: we start by presenting the over-
all geometry and notation, considering a steady-state Darcian flow in
an heterogeneous porous medium, and perform some algebraic manip-
ulation to express Ky in terms of the viscous dissipation. We intro-
duce then (Section 3.1) a useful variational derivation, that allows us
to define K in terms of a minimization of that dissipation. By using
functional expansion techniques already developed in a previous study
(Noetinger, 2013), we provide expressions for the variance of K in Q
up to second order in the perturbation expansion (valid for small vari-
ances), later improving it, for higher variances, by using a mean-field
approximation. After some more manipulation, we get in position to
show how these results are valid at any subscale (i.e., the coarsening
scale 1), even if the variational formulation cannot be applied at any
scale smaller than Q (the scale in which the boundary conditions are
imposed). The result depends also on the covariance of k(r), and on
4, while it is possible to apply again the mean-field technique, now at
this scale, to improve it. Section 6 introduces the numerical methodol-
ogy with the implementation of the three formulations, while Section 7,
presents firstly a numerical validation, and then, the results regarding
the multiscale dependence of K, under the different formulations.

2. Geometry, driving equations and notations
2.1. Geometry and local equations

We focus our attention on a block 2 to be upscaled in D dimensions,
a square in 2D or a cube in 3D. The edges of that domain are of size L
in the D directions, as sketched in Fig. 1. The potential is driven by the
following Laplace equation, to be solved in the domain Q:

V- (k(r)Vp(r)) = 0, 3

The local potential is denoted by p(r). This equation is a combination of
mass or charge conservation with a phenomenological equation relating
the local flux to the local potential gradient, such as Joule, Darcy or
Fourier’s law that may arise after a proper averaging of the sub-scale
transport processes (Hassanizadeh and Gray, 1979). In order to get a
well defined problem, Dirichlet or Dirichlet-Neumann conditions must
be specified at the frontier dQ2 of the domain. These conditions will be
discussed in the next section. The local conductivity, denoted by k(r) is
assumed to be scalar and to depend on position r. The conductivity field
can be discontinuous with respect to r.

2.2. Classical Darcian definition of the effective conductivity

Here, we defer the discussion of the upscaling problem to refer-
ences in Matheron (1967), Durlofsky (1991), Neuman and Orr (1993),
Renard and De Marsily (1997), Quintard and Whitaker (1998),
Willot and Jeulin (2009), Jikov et al. (2012). The effective conductivity
can be defined using the solution of the Laplace Eq. (3), to be solved
with Dirichlet boundary conditions at the inlet/outlet, denoted by P;,
and P,,;. Neumann no-flux boundaries are imposed on the faces of the
domain parallel to the average imposed flow, which will be the x direc-
tion in the rest of the paper. This definition of K is the so-called per-
meameter definition that will be sometimes denoted by K, This cor-
responds physically to the basic conductivity measurement that could
be performed at the laboratory, both in the Darcy or electrical context.
Other boundary conditions, such as periodic (Auriault, 1983; Durlofsky,
1991; Quintard and Whitaker, 1998; Noetinger, 2013) can be chosen,
but that does not change drastically the analysis, so permeameter con-
ditions will be kept throughout the paper.

By identification with the homogeneous case, effective hydraulic
conductivity is given by:

(9]

Keff = LD—2(P_

. (4)
in Pour)
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Here, Q denotes the total fluid flux flowing in any section of the domain
perpendicular to the mean flow x direction:

0= / dP'r k(r)Vp(r) - n. 5)
Inlet face

Here, p(r) is the unique solution of the boundary value Laplace
Eq. (3) with the permeameter forcing boundary conditions.

3. Effective conductivity and viscous dissipation

For our purpose, it is useful to introduce an equivalent algebraic
expression of K,y that was introduced in the porous media context
by Jacquard (1965), Matheron (1967), and revisited later by Wen and
Goémez-Hernandez (1996), Sdnchez-Vila et al. (1995):

o (Pln - Pout) = / dD_ll‘p(r)k(l‘)Vp(r) -n
0Q

= / dP r k(r) Vp(r) - Vp(r). (©)
2

In order to begin with, the first equality of Eq. (6) is obtained by express-
ing Q in terms of integrals over the inlet and outlet faces of the domain
as in Eq. (5). In the outlet, according to the convention defining positive
flow opposite to the face inward normal, the expression have the oppo-
site sign. Then, both face pressures are moved under the integral signs
obtaining similar expressions. Regarding the Neumann boundary con-
ditions on lateral faces, imposing no pressure gradient, both integrals
can be combined in only one over the whole domain boundary 0Q. Us-
ing the divergence theorem combined with Laplace Eq. (3) yields the
second equality. This equation has a simple physical interpretation: The
RHS corresponds to the total viscous dissipated power, that must coin-
cide with the power spent by external forcing sources set-up to create
the flow.
So, the effective conductivity may be expressed as,
1

= By P 102

_ % / dPr k(r) (Vp(r))?, @
VPQ,X LD 0

/ dPr k(r) (Vp(r))*
Q

where V_pgyx = —(P, — P,,)/L is the volume averaged gradient in the
x direction (which is the mean flow direction). The average potential
gradient Vpg, over the block volume |2| = L? is given by:

v 1 D 1 (D-1)
Vpo=— [ d°r Vp(r)= — d r p(r) n. 8
|-Q|/Q ® [£2] /ag ® ®

In the case of a square or cubic Q, the retained boundary conditions for
potential p give the proposed equality in the x direction. Eq. (7) relates
the effective conductivity of the whole block K to the overall viscous
dissipation and the mean forcing potential gradient norm in the imposed
flow direction. It will be the starting point to define a dissipation-based
effective conductivity estimator in Section 5.1.

3.1. A variational characterization of K¢

We are now in position to propose an alternative formulation that
proves to be useful for estimating the sensitivity of large scale parame-
ters to variations of local conductivity. This variational characterization
of K may be formulated as follows:

Keﬁc Py — Pout)2 LD_Z =0 (Pln - Pout)

v2 D . D 2
Keﬁ‘vl’g,x L = Mmp(r){@{p(r)}zfﬂd r k(r) (Vp(r)) } (O]

Here, the potential fields p(r) among which the minimization is to
be performed fulfill the boundary conditions at 0£2. The justification of
Eq. (9) is classical: one has to express the extremal conditions:
vr, steflpml} _ V - (k(r) Vp(r)) = 0.

op(r)
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5{O{p(r)}}
op(r)
O{p(r)} with respect to p(r). A basic presentation of functional differ-

entiation is given in Appendix A.

Using thus the particular quadratic form of @{p(r)}, these extremal
conditions give rise to Laplace Eq. (3) that governs the potential. The
final result may be derived using the same methods than Eq. (6).

The operator is a functional derivative of the functional

3.2. Functional expansion techniques for the effective conductivity

Functional techniques combined with the variational formulation
are useful to derive directly second order perturbation expansion of
the effective conductivity and of its associated variance. The starting
point is to evaluate the sensitivity of effective conductivity with respect
to local perturbations of the local conductivity, as it was derived in
Noetinger (2013) and Appendix A. The starting point is to decompose
the local hydraulic conductivity as:

k() = (k) + 6k(r).

The brackets (... ) correspond to ensemble averaging over the conduc-
tivity realizations, to be not confused with volume averaging denoted
by ==. So (6k(r)) = 0. One can use the formal equivalent of Taylor series
formula, up to second order, also valid for functionals:

60K
_ D eff
Ky = <k>+/9d ) 5k(r)

+1/d0r/d"r’ Ky Sk(r) Sk(r') + (10)
2 Jo o Sk(r) 6k(r')

The reader must note that in these equations, the functional derivative
must be evaluated while the nominal value of the conductivity map is a
uniform value k(r) = (k) (in usual function Taylor’s expansions, this cor-
responds to the point at which the derivative is evaluated). Averaging
Eq. (10) yields a second-order expansion that coincides with LLM con-
jecture up to this limited order. A concise derivation using functional
derivatives is given in Appendix B.

4. Estimation of the variance of the effective conductivity at
second order

In this section, we present expressions of the variance of the effective
conductivity that are obtained in the context of second order perturba-
tion theory. The derivations are given in Appendix C. Finally, closed
expressions are given for the cases when those expressions are particu-
larized for Gaussian covariance functions.

For the variance of the effective conductivity given by

Ciy(L) = (Kg) = (Kofp)® = ((Kgfp = (Kegy))?)

the following expression can be obtained, Eq. (C.4):

1 Dy gD /
Cx . (Ly=—— [ d"rd"r' Cy(r —1’). 11
Ko (D) BB /Q «( ) (1D

A mean-field approximation allows to replace each occurrence of K
and k by the corresponding logarithm, Eq. (C.7), providing the following
expression that can be expected to have a more extended domain of
validity for practical applications:

1
Clogkeff(L)= @/ﬂdDrdDr’Clogk(r—r’). (12)

The resulting formula is similar to Eq. (11), replacing the covariance
function by the log conductivity covariance function. For the special
case of lognormal media, this is a quite natural transformation. The same

can be done with the simplified formula (C.5).

2

In the case of the Gaussian covariance with C(r) = C (r =0) e 2%
where I, is the correlation length, explicit analytical expressions can be
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derived for CKeﬁ(L) from Eq. (11) (see Appenidx C.2 Eq. (C.8))

1.\** L L -2 1°
CKeﬁ(L)=Ck(r=0)<f> [\/2n[—erf<\/§[—> 2e 2'3—2] . (13)

c c

Likewise, using the simplified Eq. (C.5), one gets after integration
(Eq. (C.9)):

1, L
Crp(1) = Clr = 0)[\/5f erf <2\/51—C>]

The same calculations can be carried out for Cy,, Keff(L) applying the
logarithmic transformation and give analogous results using Co, (r = 0)
and the same spatial dependence.

D
. (14)

5. A posteriori multiscale estimators of K distributions

In this section, two estimators providing intermediate scale effective
conductivity distributions are presented. Both are computed using low-
cost post processing of one up scaling closure problem at the largest
available scale. These distributions will be compared to reference dis-
tributions determined by computing numerically permeameter effective
conductivity of every coarse block at any scale. The resulting pdf’s will
be compared, as well as the associated log conductivity mean and vari-
ance. For completeness, the latter will be compared with preceding an-
alytical results.

5.1. Dissipation estimator

5.1.1. Definition of the estimator

We consider now that the upscaling Laplace problem was solved on
a single conductivity realization on the entire block Q. The subscale
effective conductivity K (%) on any given cubic (or square) sub-block
of size A included in the overall domain Q can thus be defined as the
relation between the dissipation and the average potential gradient at
the block level by:

J3dPr k (Vp)?

Kiiss(9) = (15)

ibv 1’;
-2

It can be observed, using Eq. (7), that if § = Q, K;,(8) = K X Vvi—’; <
K- In the case of statistically isotropic k(r), if Q is sufficiently largelz the
average potential gradient V_py perpendicular to the mean flow vanishes,
so the effective conductivity determined by dissipation is equal to the
usual definition: Kies(8 — Q) = Ko

Considering the opposite limit, § — 0, it can be shown, using a Tay-
lor expansion of the potential gradient under the integral sign, that
Kis(9) = k(r) if and only if V_p2 ~ (Vp)? # 0. This last condition corre-
sponds to stagnation (no-flow) points. This condition is not surprising,
as it can correspond to both infinite conductivity regions or to screened
regions of vanishing hydraulic conductivity. In both cases, effective con-
ductivity is not defined. Assuming that the set of these points is of van-
ishing measure, in most cases the original detailed conductivity map
must be recovered. This criterion was already introduced and discussed
by Sanchez-Vila et al. (1995) and Bauer et al. (2008). The proposed
indicator fulfills two intuitive conditions for both extreme 9 sizes. In
Appendix D it is shown that the average of the dissipation estimator is in
agreement with that derived for K4 for volumes § tending to €, and the
structure of the finite size corrections is given too. In next Section 5.1.2,
it is shown up to second order that the variance of K;(9) coincides with
expression (11) by replacing Q by 9 as integration domain. This implies
that the evaluation of the variance Cyo, g, (4) is obtained by replacing
L by the length of the considered subscale block, 4, in Eq. (12).

5.1.2. Evaluation of the variance of block dissipation conductivity K
The block equivalent conductivity K (9) is given by Eq. (15), and its
variance may be evaluated following the same steps that in Appendix C.
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It is defined by (K ;,(9)%) — (Kg;55(9))? = ((Ky;55(9) — <Kdm(19)>)2>. So,
one gets finally:

5Kdiss ('9) 5Kdim(19)

) W(ék(r)&k(r N

(Ko@) = Ky 00 = [ aPraP

Q
Note that at present stage, the integration volume remains the whole
volume Q, it is not restricted to 9 because Keff(S) depends on the entire
conductivity map that is defined on the support Q in which the Laplace
equation is solved at the beginning. We have to evaluate the functional
6K yiss(9)
O6k(r)
variational principle that characterizes K as defined in Q is not rele-
vant at any smaller scale. The derivative is given by:

derivative . The evaluation cannot be simplified because the

0Ky (9) (Vpo(l‘))21 )+ 2 1
- ——2 9 2 D
6k(r) APVp, ADV_pOZ A
-2 sVp(r')
\% dPr’'k v .
[ Po A r po(x’) Sk(r)
1 D/ ’ 2/ D1 m 6Vp’)
—— [ d"r'kV d \% —.
/10./19 r po(r’) . " Vpy(™) Sk(r)

In that equation, the first term involving the indicator function of 9 de-
noted by 14(r) is the remaining of the result that would be provided
using the variational approach, as shown in Appendix C, Eq. (C.1). The
first integral arises from the derivative of Vp? under the integral sign,
the second corresponds to the functional derivative of —. Both terms

v
are equal to 0 if 9 = Q. At lowest order, the spatial depepndence of the
conductivity k must be discarded. It appears that the second line involv-
ing twice integration vanishes because Vp,(r’) = e, is constant up to this
order, so both terms cancel each other. So we obtain the same result that
would be provided by the variational approach if it was applicable for
block dissipation:

5K, (8 Vpo)(r)?

e = S

r APVp

Gathering all the preceding results, we obtain the following formula for
the variance of the dissipation estimator at scale 9:

1 D, D/ ’
— [ d"rd"r'C,(r —1"). 16
e /‘9 «( ) (16)
Up to second order, this formula is analogous to the variance in
Eg. (C.3) of the full up scaled hydraulic conductivity K.y The corre-
sponding formulation using logarithms is similar at this order. This re-
sult allows to extend the validity of Egs. (11) and (12) to subscale blocks
9.

<(Kdi5s(8)2 - <Kdi::(19)>2> =

5.2. Block average conductivity estimator

Another K4 estimator on subvolume 9 can be introduced, defined
as

Oy

K, 9 =———m—:
wl®) =

This expression is based on Darcy equation where Q is the flow
rate and VP the potential gradient, both volume-averaged over
domain 9§ of size A. This estimator was studied by Rubin and
Goémez-Hernandez (1990), Sanchez-Vila et al. (1995), Renard and
De Marsily (1997), Bauer et al. (2008). In particular, using a second
order expansion, Rubin and Gémez-Hernandez (1990) computed the
average and variance of log (K,,.(9)) as a function of $ and the input
covariance function of the conductivity that correspond to the observed
statistical parameters observed at scale L. They give the following ex-
pressions:

(108 K e (9)) = log K, + (% - %) (1 = @) Clog(r = 0)
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((10g K 4,6 (9) = (102 K e (9)?) = @ Cio 1 (r = 0)

The normalized variance correction factor a given by

’
a= L/dDrdDr’ M,
1912 /s Crog (™ = 0)

depends only on the geometrical form of the covariance function and
on the averaging volume 9 size A. It can be observed that it shares the
same form than the scale-dependant variance (11) derived before. It can
be noticed that using directly LLM formula for estimating K4 for large
size A using these parameters, Eq. (1) under its second form is recov-
ered as terms involving a terms cancel. This highlights some internal
consistency of this estimator.

In practice, once the potential is solved, the evaluation of K (%) and
K. (9) is straightforward and of negligible extra computational cost. For
a given size A, one obtains a set of (%)D , D =2,3 values of K (9) and
K4y(9) that can be studied using statistical tools. This will be the main
topic of next sections.

6. Numerical methodology
6.1. Generation of media samples

We first compare the formulations over random lognormal media
samples with low and high variance, and then, over binary media sam-
ples that have a high contrast of characteristic conductivities. We em-
ployed a fast Fourier transform (FFT) moving average (FFT-MA) method
(Le Ravalec et al., 2000) to generate these samples. Lognormal hydraulic
conductivity fields with unitary geometric mean K, were generated.
Gaussian covariance, with an integral scale I = 16A defined as the prac-
tical range of the covariance function (I = V3 1.), was used to spatially
correlate the samples. Fig. 3 (left) shows, as an example, a realization of
a lognormal medium obtained with this procedure. All media samples
generated have 1024 x 1024 cells, with a linear size of 1024A. In order
to reduce the numerical truncation error when computing the potential
field, a refining stage of degree 4 was performed (Romeu and Noetinger,
1995; Liu and Wang, 2013), resulting in a grid of 4096 x 4096 compu-
tational cells of linear size A/4.

Binary random media is generated as follows: We start by generat-
ing a lognormal one with an arbitrary geometric mean K, and variance
0-120 e Then, this lognormal distribution is binarized using a threshold
value k;, assigning each cell a characteristic k* (high conductivity) or
k™ (low conductivity) value (with k* /k~ = 10%). The value of k, controls
the relative population p of high conductivity cells. Three values of p
were studied, one at the 2D percolation threshold p, = 0.5, one smaller
(p =0.4) and one greater (p = 0.6) than p.. At p., 50% of the realiza-
tions percolate. We used CONNECT3D software (Pardo-Igltizquiza and
Dowd, 2003) to explicitely verify the percolation condition.

The spatial correlation function of the resulting binary medium re-
mains gaussian. In turn, the integral scale of the binary medium is
determined by the integral scale of the original lognormal medium,
but also by p. To be able to use the former as an input parameter,
we’ve performed an iterative search for each of the values of p stud-
ied. Fig. 3 (right) shows, as an example, a realization of such a binary
medium.

For each set of parameters, we generated 50 samples in order to
obtain an acceptable statistical sampling at largest scale L.

6.2. Potential field calculation

For the K, and Ky, formulations, it is only required to solve the
potential in Q once, and then post-processing of the obtained field is
performed to obtain K at any scale 4. For the K, formulation, the
potential must be solved independently for all the sub-domains $ under
study.
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Fig. 3. Maps of log (k). (left) Lognormal medium obtained from FFTMA. Input data: 0'120 W =7 T =16A. (right) Binary medium. Input data: p = 0.5, k* /K, = 100,

k™ /K, =0.01.

To obtain the potential field we used MODFLOW-2005' soft-
ware (Harbaugh, 2005) with the corresponding boundary conditions.
This solver uses the finite difference method with a classical 2D + 1
point stencil. Particularly, the Block-Centered Flow package (BCF6) was
used, and the linear equation system was solved with the Preconditioned
Conjugate-Gradient package (PCG).

6.3. Implementation of the permeameter scheme

We used classical permeameter boundary conditions in the compu-
tation of the potential fields. In MODFLOW, these boundary conditions
are applied assigning constant potentials (Dirichlet type) to two opposite
cell layers, each of them representing a domain face. A unitary poten-
tial difference (AP) between them is set. All other faces are constrained
by no-flow boundary conditions (Neumann type) applied to ghost cell
layers outside the domain. These boundary conditions are applied at 9%
to compute K, defined as

(¢
Koern = 785>
The integral of the flow, Q, is calculated at the inlet or the outlet face of
the block $ with permeameter boundary conditions. For each medium,

Kperm was computed for the whole set of subscales 4 = 2", with integer

n between 1 and 10, resulting in (£)2 = 2210-" values at each subscale.
The same procedure was followed for the other two estimators.

an

6.4. Implementation of the dissipation scheme

Based on the resulting potential field computed using MODFLOW
with permeameter boundary conditions (Sections 6.2 and 6.3) on do-
main Q, and the theoretical development presented in Section 5.1, the
dissipation-based block estimator computation is as follows. As the finite
difference scheme adopted in MODFLOW is cell centered, after solving
the potential field in Q, both the hydraulic conductivity k;; and potential
Pi,j at each cell center are known. Notations are referred to cell (i, j) of
9, where (i — 1,), (i + 1, ), (i,j — 1) and (i, j + 1) are the left, right, top
and bottom neighbouring cells respectively. Using an electrical analogy,
the local cell dissipation can be computed as

— 2 2
€ —'/9 d°rk;; (Vp)

inJ

= 2%, [(P ,

i+5.

— P+ (P,

1
=3

_ pl_,j)Z
+ (P, = PR+ (B, I—P,._jf] (18)

Lj=3

The factor 2k;; corresponds to the conductivity of the half bond be-
tween the center and any face of 9;;. The potential subscript with minus

1 https://water.usgs.gov/ogw/modflow,/mf2005.html

or plus halves refer to cell face potentials computed invoking the equal-
ity of flux at both sides of the face. For example the potential on the left
face of cell (i, j) is given by:
P (kijPij+ ki1 Py ;)

1= .

N (ki +kiz1)
The other cell face potentials are defined analogously. Using equivalent
equations to eliminate face potentials in Eq. (18), we get:

2 2
1
€ij = ﬁ |:<T‘+éj (Pigr,j — Pz,)) + <Tl_%1 Pioyj — P;,))

2 2
+ <le+% (P jr1 = Pz/)> + (TI/_% (Pijo1 — Pi,j)) ]

The coefficients T are the usual intercell harmonic averages given by

T i =2t andT | = .
30 T Ttk Lits T Ktk

Ohm’s law for dissipation can be recognized through the squares of
the fluxes flowing through the faces. The cell face potentials are also

used to compute the cell potential gradient as

Pory=Pii; Bi—F,
T _ 2 2 ) 73

A ’ A
Thus, the averaged potential gradient of the block is

TP = Ei,j VPi,j7
nn;

_ 2k ki

with n;, n; the number of cells in each direction inside the block. In every
case, the sum runs over all the fine grid-blocks included in 9. Finally, the
block dissipation-based estimator of Eq. (15) for block 9 is computed as

Zi, j €ij
A2VP
Fig. 4 presents the resulting dissipation maps for lognormal and binary

media samples. A strong localization (channeling) effect may be noticed
close to percolation threshold for the binary case.

Kiss(9) = 19)

6.5. Implementation of the block average conductivity scheme

Based on the computation of the potential field in Q, the second K
estimator can be defined in 9 as:

-9
VP,

K (20)

ave
This expression is based on a large-scale Darcy equation where Q is the
flow rate and V P the potential gradient, both averaged over the domain
9 of size 4. With the proper boundary conditions it is possible to recover
the full hydraulic conductivity tensor (Bauer et al., 2008). In this study,
we only considered the direction of the imposed potential difference AP.
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Egs. (13) and (14) using the mean-field approximation. (-.-) Numerical; (—) Analytical; (—) Simplified analytical. Input variance: (o) "120g (=01, 5120 ok = 7.
Table 1
Simulation parameter names, definitions and values.
Definition Symbol Values
Lognormal Binary
Size of the full domain L 1024A
Covariance function C(r) Gaussian
Integral scale I 16A 8A
Fine grid geometric mean K, [m/day] K, 1
Fine grid variance of log(K) Clogi(r =0) = o-lzogk 0.1; 7
Characteristic conductivity [m/day] Kty k™ 100; 0.01
Proportion of cells with k* p 0.4; 0.5; 0.6

7. Results

We begin this section by comparing, as a form of validation, the out-
comes of the analytical developments of Section 4, for lognormal media,
with the corresponding numerical results using the well-known K, €s-
timator. Then, for both type of media, we study the scale-dependence
of the pdf of the three proposed estimators, to later focus on the first
two gaussian moments i.e. mean and variance. For this latter case, a
comparison with the mean-field analytical variance of K¢, Eq. (13), is
performed. The common parameters and values used in the simulations
are presented in Table 1.

7.1. Comparison of the different analytical expressions for Cy, ff(/l) with
numerical results

Fig. 5 shows the variance of Keff given by Egs. (13) and (14), and their
equivalent expressions within the mean-field approximation, compared

with the K, estimator, as a function of the coarsening scale 4, that
varies between fine grid scale A and L. A low (0-120 ok = 0.1) and a high

(17120 ok = 7) fine grid variance are used as extreme cases.
The analytical results are in good agreement with the numerical sim-

ulations for 0120 ok = 0.1 when using the expressions based on the conduc-

tivity variance aéﬁ (Egs. (13) and (14)). The difference increases for the

case of ‘7120 ok = 7, specially for scales equal or greater than the integral
scale, defined as the practical range of the covariance function. The esti-

mation of the variance of the logarithm, 0-120 oKy (Appendix C.1) provides
€]

a better agreement with the numerical results even for 0120 ok = 7. In this
case, the analytical equations correctly capture the tendency as the scale
increases, with small discrepancy from the numerical results beyond the
integral scale. In both cases, the simplified formulas (Eq. (14)) coincide
to a large extent with the complete ones except at the scales close to

the integral scale, where a small difference appears. In view of these
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observations, comparison against analytical results in the next sections
will be only carried out with respect to Eq. (13) using the mean-field
approximation.

7.2. Lognormal media

7.2.1. Probability density function of the different estimators

Pdf’s of Kyiss, Kgye and Kpep,, are plotted in Fig. 6 (left) for o2 =7
Although Ky and K, present a sharper pdf, they are rather similar.
The dependence of the pdf of Ky, with the coarsening scale 4 is shown
in Fig. 6 (right). It can be observed that the pdf remain Gaussian at
all scales. As a Gaussian pdf is fully described by its mean and vari-
ance, in the following subsection, we focus our attention on these two
moments.

7.2.2. Scale dependence of the mean and variance of K
Fig. 7 compares the values of the geometric mean of K, indicated

by ((...)) (left), and the variance 5120 e Koy scaled by (%)2 (see Appendix C)
(right) for the three estimators. As A tends to A, ((K,)) approaches to the

fine scale mean Kg for both variances. For 0120 ok = 0.1, the three formu-

lations yield very similar results, while for 0-120 ok = 7 some discrepancies
are observed. Moreover, for 4 close to I, a depart from the theoretical
value (of upto 12%) is observed for K. We recall that, as developed
in Section 5.1.1, if 9 = Q, the potential gradients transverse to the mean
flow vanish, due to the boundary conditions applied at that scale in all
cases, but, if $ < Q, these gradients may exist and be non negligible.
Also, they are stronger as the heterogeneity increases, explaining the
slump in K g for A close to I.

The variances of K, were evaluated analytically using the mean-
field approximation of Eq. (13). In Fig. 7 (right), the variances of the
three estimators show an excellent agreement with the analytical re-
sults for 0'120 e =01 while, for 0'120 =72 slight difference for A > I is
observed for the three estimators, probably due to discretization effects
(Romeu and Noetinger, 1995).

7.3. Binary media

7.3.1. Probability density functions of the K¢ estimators

In binary media, the lower limiting case is when the upscaling scale 4
tends to the fine grid scale A, with only two possible conductivity values:
k* with probability p, and k= with probability (1 — p). Consequently, the
pdf of the effective conductivity tends to a two-peaked distribution with
relative heights given by p and (1 — p), and its mean is similar to that
of the original medium at the fine grid scale. On the other hand, the
upper limit correspond to the upscaling scale reaching the domain scale
L. In this case, the pdf of the effective conductivity looks more like a
unimodal distribution with its mean approaching k* whenp > p., and k-
when p < p... At intermediate scales, a transition between both extreme
behaviors occurs. Pdf’s of Kgis;, Koy and Ky are plotted in Fig. 8 in
order to compare them with the expected behavior. Three situations,
with p smaller, close to and greater than p. = 0.5 (for which percolation
transition occurs), are shown in this figure.

In the left column of the figure, the three methods are compared
for A = 32A. At this intermediate scale different behaviors are observed
depending on the method. The pdf’s of the three estimators considered
here exhibit some differences: the K., estimator presents more peaked
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Fig. 8. Pdf’s of the effective conductivity log (K,y) resulting from the three studied estimators. Input data: relative population p = 0.4, p=0.5 and p = 0.6 (top to
bottom). (Left) Results obtained with the three methods for 4 = 32A. (Right) Ky, results for three block sizes 1 = 4, 32, and 256 A.

distributions with two clearly separated modes while those of global
methods, Ky, and K, are relatively more homogeneous, with a con-
tinuous variation between the peaks. Also, the values of conductivity
corresponding to the facies that does not percolate are only retained in
the case of Kp,,, while Ky and K,y smooth them out. This is a di-
rect effect of the permeameter boundary conditions that are imposed
for each sub domain 9 when computing K. This renders percolation
in 8 much more critical for K. On the other hand, analyzing the behav-
ior when small, middle and large scales are adopted for A, the expected
behavior is recovered. Ky, converges to an unimodal distribution as
A increases, faster as p departs from p., as it was observed in a previ-
ous study for K, (Boschan and Noetinger, 2012). In addition, as p
departs from p,, for a given 4, the distributions become narrower. This
implies that the convergence to a representative mean is slower near
percolation.

7.3.2. Scale dependence of the mean and variance of K¢

In the binary case, as it is clearly seen in Fig. 8, the pdf’s of K
are far from being unimodal, and then, the mean and variance be-
come less representative of the pdf, compared with the lognormal case
(cf. Section 7.2.1). For example, one may note that, in panel C of Fig. 8,
the mean would not be particularly representative. However, previ-
ous studies analyzed the mean and variance much more frequently
than the complete pdf, so we consider interesting to present them for
comparison.

Fig. 9 shows the variation of geometric mean of K (left), and of the
120 e Koy (right), for the three estimators, as a function of A for
p=04,p=05and p=0.6. The values of ((K)) coincide as 4 tends to
the limiting A or L, for all the values of p. The behavior at both limits of
the range corresponds to which is expected for a representative effective
conductivity. Furthermore, the behavior far from those extreme values

variance o,
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is strongly dependent on the particular estimator. As observed in Fig. 8,
the two peaks in the K, histogram remained clearly identifiable at
larger A values, in opposition to what happened in the cases of K, or
Kgaye- The outcome is that if p is far from p,, Kpep,, converges more slowly
than K g, or K, to the asymptotic value of 2 = L. This is consistent with
the faster homogenization shown by the global estimators in the pdf’s of
section 7.3.1. Comparing K, and K,,,, the former shows a slight bias
to lower ((K,)) values.

The variance o2
log Keff

coincides as 4 tends to A or L. At intermediate scales, Kp,,, always

yields the highest 5120 oKy in agreement with the findings shown in
€
Section 7.3.1, where it was shown that the pdf remained bimodal for
a greater 4 than for the other two methods. Note that, in the non per-
colating case (p = 0.4), Ky produces lower variances than K, while
the opposite happens for the percolating case (p = 0.6), and, at p, = 0.5,

both estimators yield similar values of 012 .
0g Keff

computed using the three formulations also

8. Summary, discussion and perspectives

After introducing an efficient K.y estimator based on energy dissi-
pation, we revisited numerically and analytically three of the most im-
portant upscaling formulations, analyzing the scale dependence of the
resulting K, distributions.

For 2D lognormal media, K distributions remain lognormal at in-
termediate coarsening scales for all the formulations, a result that could
be theoretically related to the LLM formula (Landau and Lifshitz, 1960;
Matheron, 1967). The numerical results for ((Kq)) and 0120 e Koy are in
agreement with the analytical ones. This is notable for intermediate

coarsening scales, having in mind that these last results are not exact.

In particular, the asymptotic behavior of 0120 oKy for 4 > I, varying as
€]

(1/4)?, is reminiscent to a central limit theorem.

In the binary case, for p far from p,, the pdf of K. evolves from a
bimodal to a unimodal distribution, with representative mean and vari-
ance. The mean and variance of the three estimators converge to the
same asymptotic K¢ values for p = 0.4 or 0.6. It can be observed that
the latter obeys the scaling law with 1/42 in that case. Close to percola-
tion threshold p, the intermediate-scale K, distributions do not exhibit
convergence to an asymptotic stable distribution. The ((K.4)) remains
close to the fine grid geometric mean K,. This may be explained by the
fact that in 2D, at 0.5 = p,, the analytical result of Matheron (1967) can
be applied, yielding the geometric average in that very specific case.

Looking more carefully to Fig. 9, for p = p,, 0120 oKy does not follow the

scaling law in 1/42. This should be related to the absence of a repre-
sentative elementary volume (Berkowitz and Balberg, 1993; Hunt et al.,
2014; Stauffer and Aharony, 2014). Quantification of such effects re-
mains to be studied, and K, estimators that comply to finite size scaling
arguments might improve the existing description.

The computation of K4 through K, and K ;s is much more efficient
than using Kperms because, in this case, the potential is solved once for Q,
and then by post-treating this solution, K, can be obtained at all scales
if a multiscale description is required, while providing similar results.
Using Kjerm involves solving the potential independently for each scale,
due to the strong influence of the boundary conditions imposed at 99.

Now comparing K, and K, we illustrate the degree of discrep-
ancy between these two estimators as a function of the coarsening scale,
showing in Fig. 10 the ratio between the geometric mean of K, and that
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of K. It can be observed that the greater discrepancy occurs, both for
lognormal and binary media, for 1 ~ I, where I is the practical range
of the covariance function as measured in both types of media samples,
giving a characteristic lengthscale for heterogeneity. Note that K, (see
Section 5.1) is sensible to transverse potential gradients, while K, isn’t,
because it assumes a colinearity between potential gradient and flow.
These transverse potential gradients vanish at A = A and at 4 = L, while
they have a maximum in-between, at a critical lengthscale, despite that
media samples are statistically isotropic. The degree of discrepancy is
then probably driven by the scale dependence of these transverse po-
tential gradients.

Except for the lognormal case of "120 ok = 0.1, K gis is smaller than K,
up to 12% in the lognormal case of 0120 ok = 7, and up to 80% in the
binary case. The bias of K;,, towards lower values was also observed in
the pdf’s shown in the Sections 7.2.1 and 7.3.1.

The 3D generalization of this work is currently under development.
In particular, the appearance of an attractive conductivity distribution
for the different formulations, playing in 3D an analogous role to the
lognormal distribution in 2D, is of central interest. Moreover, for bi-
nary media, it is highly interesting to assess the slower convergence to
an homogeneous K, distribution close to the percolation transition in
3D media in the context of the different formulations. More realistic or
complex distributions such as non Gaussian or power-law (Panzeri et al.,
2016; Riva et al., 2017; Guadagnini et al., 2018) will be addressed in
future work. A major practical issue regarding non-homogeneous mate-
rials is to find some self-contained estimation of the REV size allowing to
determine, for a given case, if the REV size is reached. That will help to
find the optimal meshing size, and to quantify uncertainty propagation.
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Appendix A. Functional differentiation

Functional differentiation is a generalization of calculus to function-
als, i.e., functions having a function as argument. Our presentation is
intuitive. Let F({k}) be a functional that depends on the whole set of
values of k which is an arbitrary function of position r € Q. The nota-
tion {...} recalls that F is a functional. Examples of functional can be
the value of field k at a given location ry: Fy({k}) = k(r,), the weighted
average F<m>/({k}) = |'7‘ fv dPr f(r) k(r) in which f(r) is a fixed func-
tion that does not depend on k. The functional derivative of a functional
F({k}) is defined by the following equation:

F({k + esk})) — F({k}) =/dDr 6F Sk(r)
€ S6k(r)

Here, 6k is an arbitrary perturbation. The functional derivative has a

supplementary spatial argument (that corresponds in the case of par-

tial derivatives to the choice of the variable with respect to which the

Lim

e—0
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derivative is performed). In the examples of Fy({k}) and Fe 5, (kD
one has

5F,

sy~ 2~ ro)
OFc >, fr)
sk(ry V|

It gives the sensibility of the variation of F with respect to a local vari-
ation of its argument k at position r. Nth order functional derivatives
can be defined, as well as a Taylor formula, replacing summations by
integrations.

If f(x) is a standard differentiable real function, one has the chain
derivative formula:

§f(F) _df gy OF
Sk(r) ~ dx Sk(r)

If p(r) obeys a Laplace equation such as
V- (k(r) Vp(r)) =0,

Putting k(r) = k + 6k(r), one obtains:
V- [(k + 6k(r)) (Vp(r) + Vép(r))] =0,

Denoting by ép(r) the first order variation of potential p(r) with respect
to k(r), one obtains that §p(r) obeys the following equation, valid at first
order:

V- (k Vép(r)) = =V - [6k(r) Vp(r)] (A.D

As the unperturbed potential p(r) fulfills the boundary conditions at the
domain boundary, 5p(r) = 0 on Dirichlet boundaries, and same condi-
tions for the normal flux at the Neumann boundaries. This equation has
the formal solution:

op(r) = —/ dPr' G (r,x') V - [5k(x") Vpo(r")]. (A2)
14

Here, Gi(r, 1’) is the Green’s function of the Laplace operator that obeys
the following equations, to be supplemented by consistent boundary
conditions:

V- (k VG (r,r")) =8 1)
G, (ry, =0,1,r") =0, 0,Gy(ry =0,1,r')=0

So one gets finally after one integration by parts:

op(r)
Sy = Ve Gk Vo) (A3)
This result may recovered directly, applying the operator # at both

sides of Eq. (3), providing:

op(r) '
kv =-V. -V
v (k 5k(r’)> V- [6((r" — 1) Vp(r)],
which is equivalent to Eq. (A.3). Note that the base conductivity field k
may also depend on position, or be equal to (k), the choice depends on
the application at hand.

Appendix B. Second order estimation of the average effective
conductivity

In order to illustrate the functional formalism, we carry out with
this tool the classical second order expansion of the effective conduc-
tivity (Dagan, 1989). The Taylor expansion Eq. (10), gives directly a
second order series expansion that will provide the desired expansion
after averaging:

2 Keﬁc

!
m Ck(r —l'). (Bl)

1
K, =k+-/dDrdDr/
(Kof) = (k) 2 /o
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The main task is to evaluate explicitly the second order func-
tional derivative that may be simplified in the following form, using
Eq. (C.1) differentiated once more time:

8° Ko .y 220
Sk(r) Sk(r!) |Q| VPV e

In that equation, py(r) is the non-perturbed potential. The derivative
op(r)

is given by Eq. (A.2). So, we get after substitution:

Sk(r’)
spr) _ 1 Nog
W = ) VG(r,r’) - Vpo(r’). (B.2)

In that expression, G(r, r’) is the Green’s function of Laplace operator
V2, this explains the factor % Note that due to the boundary condi-
tions that break full translational invariance of the system, this Green’s
function does not depend only on the argument (r — r’). Gathering these
results in Eq. (B.1), and using the fact that Vp,(r) = e,, one obtains:

D, ;D op(r) ,
(Keg) = (k) - <k>|g|/d 4P V0. 228 G’ )

= (k) — m /QdDr dPr’ 9, 0, G(r,r)C (x' — 1) (B.3)

Assuming that |Q|!/P is large compared with the integral scale I, one
can replace G(r, 1) by the free space Green’s function G(r — r’). This is
equivalent to estimate the Green’s function assuming that the boundary
conditions are rejected at infinity.

Using the correlation function isotropy, the integral can be simplified
using a classical trace argument, yielding:

Keg) = () = 75 O =00

Up to the same order of approximation, this formula can be rewritten
on a more usual form as:

1 1
(Kyp) = exp (log(k))e'2 5 Toeir=0),

For log normal media, this formula is equivalent to the LLM conjecture,
Eq. (1). The second order expansion is thus recovered for large averaging
volumes, with a quite concise calculation.

Appendix C. Second order estimation of the variance of the
effective conductivity

The variance of the effective conductivity is given by
Cr (L) = (K%)= (Kegp)? = ((Kefy = (Kogp))?).

Using the Taylor expansion Eq. (10), and keeping only second order
terms, one gets dropping the averaging symbol (---) under the inte-
gral sign, a procedure that is straightforward within the stochastic con-
text (Dagan, 1989; Gelhar, 1993; Hristopulos, 2020). The procedure
would be different using a volume averaging technique involving bound-
ary of averaging-volume corrections, Hassanizadeh and Gray (1979),
Whitaker (2013):

6K, ¢ 6K,
_ D. ;D eff
CKeﬁ(L)—/Qd rd°r <5k(r) D) Sk(r) Sk(r’ >

0K
The quantity 6k(ef; can be written under a simple form:
K
off o 2
\% Q=V . C.1
3k pgxl | = Vp(r) (C.1)

Derivation of Eq. (C.1) is straightforward using the variational charac-
terization Eq. (9) that can be differentiated directly with respect to 5k(r)
ignoring the implicit dependence of Vp(r)2 with §k(r) that is known to
vanish thanks to the variational characterization. This Eq. (C.1) relates
the influence of a local hydraulic conductivity change on K to the local
potential gradient. This result was already derived using similar meth-
ods by Jacquard (1965) and generalized to obtain shape derivatives of
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effective conductivity with respect to geometrical shape of inclusions by
Noetinger (2013). One can remark that in a location where Vp(r) = 0,
the local conductivity has no influence at all on the large scale conduc-
tivity: it is screened by other patterns that imply that there is no flow at
this location. This is a rather intuitive result.

Thus using Eq. (C.1), we obtain:

2 "2
D= 1 /dDrd <V"(r) V"(r) Sk(r) Sk(r )> . (€2

o2 2
|Q| Vpr vpﬂx

As we are seeking a second order expansion of the variance of effec-

tive conductivity, the local quantity Y28 (r) (resp. Y2 (r i ) may be replaced

pﬂ X VpQ X

by 1, getting:
gD == e /dDrdDr’ (5k(r) Sk(r')). (C3)

After averaging, introducing the pair correlation function Cj(r —
r’) = (6k(r) 5k(r’)) of the hydraulic conductivity fluctuations, we get
a formula already obtained by Rubin and Gémez-Hernandez (1990),
Sanchez-Vila et al. (1995), Wen and Gémez-Hernandez (1996):

# D)= / dPrdPr’ C (r - 1"). (C4)

QP
Note that for small averaging volume size L compared to the integral
scale I, this formula gives by direct inspection C, Keff(L) = C(r=0). On
the other limit, assuming that the unit volume size is very large com-
pared to the underlying integral scale, one gets the asymptotic behavior:

~ L [ gp
Cry(D) % 1o /Qd r C,(r). (C.5)

For large L, one has the scaling :

b C(r)
~ D. =k
—Crk (L)~ / d*r . (C.6)

The factor LP/IP corresponds to the number of independent statistical
units that belong to volume Q. This scaling corresponds thus to a cen-
tral limit theorem characterizing the emergence of a deterministic large
scale effective conductivity. In other words, the system exhibits self av-
eraging properties. Egs. (C.4) and (C.5) are solved for the particular case
of the Gaussian covariance in C.2.

C1. Improved estimation of the variance, mean-field approximation
The preceding development is limited to small variances. In order to

find an improved approximation, one can use Eq. (C.2) written on an
equivalent form:

2 D D7
(K= (K = o [ aPravr

<k(r>Vp(r>2 K(r")Vp(r')? 8k(r) 5k(r'>]>

— —2 ’
Vhe. Vha. k(r) k(')

Now, one can replace k(r)Vp(r)? and k(r")Vp(r')? by their common av-
erage value ( Keﬁc)V_pQ,x. So one gets:

D Sk(r) Sk(r')
/Qd rd? <k(r) ) R

(Kezﬁc> - (Keff>2 _ L
(K2 QP

Up to this order of approximation, the result can be identified with the
variance of log (Keff) and the equation can be rewritten as:

Clog kg (L) = ((10g(Kog))* — (log(Keg))?)
1

= @/dDrdDr’(ﬁlogk(r)élogk(r’))+...
Q
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This equation, up to this order of approximation, is equivalent to
Eq. (C.4), by replacing every occurrence of a conductivity by the corre-
sponding logarithm, so:

1
Clog k(L) = 7 /g dPrdPr Cpog i (r — 1. (X))

Q2

The resulting formula is similar to Eq. (C.4), replacing the covariance
function by the log conductivity covariance function. For the special
case of lognormal media, this is a quite natural transformation. The same
can be done with the simplified formula (C.5).

C2. Gaussian covariance case

In the isotropic Gaussian case, the covariance function is given by

2

G =Cr=0)e

The integral factorizes, and after changing variables x — x/I., we ob-
tain:

L/ZI L/Zlc

D
_=p?
Cpr) = Cy(r= 0) dxdye 2

dy [erf <—L/IC — 2y>
22

[ —L/21I, L/21
L/21
L/21
L/I 2
e ( g y)]}

1.\* L L N
= ck(r=0)<z"> [\/27— erf <\/EI—> +2¢ 202 —2] (C.8)

= Cur= 0)

1,

c

Considering small upscaling volume, L small compared with I., we
obtain Ciypr) = Culr = 0) as it should. In the opposite case, considering
large upscaling volumes L provides

I D
Cropr = Ck(r—O)(\/_f>

This is a form of a central limit theorem for effective conductivity, quan-
tifying the variance reduction leading to convergence of the effective
conductivity for large averaging volume.

Finally, using the simplified expression (C.5), one gets after integra-
tion:

D
Cry(L) = Colr = 0)[\/5% erf <2\/§I£>] (C.9)

It shares the same asymptotic behavior for extreme L than the exact (13).
The same calculations can be carried out for Cy, Koy (L) and give the
same results using Ciogk(r = 0)) and the same spatial dependance.

Appendix D. Second order evaluation of the average of block K,

The block equivalent conductivity K, (9) is given by Eq. (15). De-
composing the conductivity as k(r) = (k) + 5k(r), one can carry-out a
second order expansion of Ky ;. (9):

dPr((ky + 8k)(V 5p)2
Kiss(9) = JydPr((k) + 8K)(V(po + 6p) .

)

APV(py + ép)

This formula must be expanded up to second order in a series expansion
of 5k. Note that the technique that was presented in Appendix B cannot
be followed directly because the variational formulation is efficient at
the scale of the whole Q only, not on every subvolume 9. In order to
simplify notations, we introduce 6p(r) as the first order variation due to
a variation 5k(r). The numerator can be expanded up to second order,
discarding third order terms to yield:

/dDr (k) + 8k)(V(py + 5,;))2 ~ /dDr((k) + 8k)(1 +2Vp, - Vép)
39 9
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+ /dDr<k>(v5p)2. (D.1)

&

An analogous calculation can be carried out for the denominator,
recalling that Vp,(r') = e,:

b 2 b N |
APV (py +0p) = A (V(po) +2Vpy - Vép + V5p>
B —
= /11’(1 +2Vp, - Vép + Vép ) (D2)

Combining Eq. (D.1) and the second order expansion of Eq. (D.2), many
cancellations occur, yielding still at same order of approximation:

1

Kyiss(9) = k + ﬁ[z/dbr 6k(Vp0~V5P—V_IJo-V6P>
9

+(k) / dPr (Vép)? - V_épz)]
39

One has in the general case Vp, = Vp, = e,. It can be observed that in
the case of small averaging volume 9, K;.(9) = k(r) as it should: all the
contributions cancel each other, because in that limit a volume average
is equal to the local value: Vép = Vép. Further simplifications can be
obtained using Green’s formula on the term (k) /,dPr(Vép)?> combined
with Eq. (A.1) that drives 6p, yielding:

Ky =k + i/d“rak Vpo - Vép
b Jg

1 PR —2
- /{—D<2/dDrékVp0~v5p+/dDr<k>v5p )

LR

+ 5 dD Iy 6pVép- n+—/ dP~lr 6k6pVpy -m

(D.3)

We obtain after statistical averaging:

%/dDr/dDr’ vpo(r)vﬂ c('—r)
9 Q

<Kdixx(8)> = <k> - 5k( ')

i v (246K Voq - Vom) + (k) (To )

-5
<k> dD 'v(6pVép- n>+—/ dP='r(6k 8p)Vpy - m
a9
Using
op(r) 1
k() <k>V [G(r,x")Vpy(r")],

and combining this result with Eq. (D.2), one obtains:

(k;lD /‘dDr/gder’d,xa,;G(r,r')Ck(r’—r)

-5 / dPr((25k Vg, - Vop) + (k)(V6p )

L
AD

(Kyiss(9)) = (k) —

dD 'v(6pVép- n>+—/ dP~'r(8k 8p)Vp, - n.
a9
(D.4)

It can be checked by direct inspection that first line of this formula com-
pares well with Eq. (B.3). The other contributions are finite size effects
that cancel if 9 = Q. They explain the observed differences in the nu-
merical tests. If § tends to zero, (K ;(9)) = (k).

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.advwatres.2020.103594.
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